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1. Introduction.

Let H be an Hermitian matrix, z a row vector of unit length,

P= zHz* , a2 = z(H- 41) 2z* . The enclosure theorem of Krylov and

Bogoliubov (1] (see also Weinstein [2], Kohn [3], Block and FucV

(4], Swanson [5] ) asserts that there is an eigenvalue in the interval

,-a •

We now present a probabilistic interpretation which yields a

simple proof of this result as well as other enclosure theorems.

Write H = U*DU , where U is unitary, D = diag(, ... ek ),

then for any unit vector z ,

=zHz* (:11*) D(Uz* )

with O Vj p p 1. Consequently, we may view 4 as the mean of

a randa variable X with probability distributiOn P (X f 1 = p ,

1, ... , k . Similarly, a2 = z(H- I)2z* =z p3 (e 0 - )
2  is the variance

of X . According to the Bieniyie-Chebyshev inequality,
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(1) Pa Ix-M1_<t )> 1 -t 2

Hence, for all t > 1 there is positive mass in the interval g. -t

p +at] , which implies that there is positive mass in (p -a , a]

Since the mass is distributed only on eigenvalues, this means that there

is at least one eigenvalue in ILp- a .0 +a]

In general, if a bound is obtained for some set g , i.e..,

PCX C eW) >p, then pj >p y where the summtion is over all j

corresponding to J, e But pj a Iu, z*' 2 , where is the

th row of U , and is, therefore, an eigenvector corresponding to

the eigenvalue 0 , so that uj *12 > * p

In Section 2 we state a number of enclosure theorems, and in

Section 3 we present the related probabilistic inequalities which

furnish proofs.

2. Enclosure Theorems.

We now state a number of enclosure theorems to illustrate the

variety of results which may be obtained in this manner.

In the following we let H be an Hermitian matrix, z a row

j vector of unit length, a - zHz* , 2 Z(H-.IX)2z *

2.1 GenWea Hermitian Matrix.

I There exists at least one eigenvalue in the interval

2



Remark.

In this and the following theorems, a slightly stronger version

can be obtained by making the interval half-open.

This theorem is given by Kato (6]. The result of Section 1 is a

special case with a 0.

2.2 Positive Definite Hermitian Matrix.

Let H be positive definite, and iL1  SE z " If S < PL

a < I/P-l , then the interval [a , (4-a) / (1- so-)) contains at

least one eigenvalue.

The particular interval, (L- 'i 1) / .1 , (i+,'j.I A 1/ ] ,

has minimm length.

2.3 Bounded Hermitian Matrix.

Let H and I-H be positive definite. If -p < r <-o 2 /(l-) ,

then there is at least one eigenvalue in (0 , r+ p]U[-,2 /r + . , p ]

3. Probability Inequalities.

We now present the probability inequalities which furnish proofs

for the enclosure theorems of .Section 2.

3.1 Theorem of Selberg (7].

If X is a randomvariable with IX is X(x - P) 2 = 2 , then

for all real a and positive b,

(i) PIX -pal <b >l 1 -2 a if d2> I&Ib-a,

b2'

(ii) P i - -aI < b I it -a .... <
_* + (b- ,.al) 2

This inequality is sharp.



The proof of this asymmuetric version of the Bienayng-Chebyshev

inequality in (7] is unnecessarily complicated, sn4 ye give the

following proof.

Proof.

'If fx) (x -a) 2 /b 2  whenever 02 & ta b -a
2 , f (x)

[(b - t'at) x - d,] / (b - ta) 22whenever a2 < tat. b - a2

then f(x) ?o foral x and f(x) >1 forall tx-v- al b.

The result follows from IS f (X) Z P( IX- g, - atI > b)

;f b2 _a2 >c,2 >tatb &2, the extremal distribution is

P Y pa +b-p,P( Y pa -b -p 2, P Y - p- a]

2222if 2< tatI b - a2  -a > 0 ,the extremil distribution is

?oqr a < q use -Y for T.

If -,>b a2  toj~e extremal' distributio qIsa PC Yr-- 4 w a +b - c

(b + ca)/C(2(b+ c) J 1 - PC Y - a -b-c ), where

+ b.

To obtain the enclosure theorem) we consider (i) and require

v2+a&) /b 2 <l1, sothatforAll b>fa - there itsan

*igsnvalue In the interval t a + A + + 1 + a .I ine the bound (ii) is always less than 1, we obtain the'{shortest interval by thoosing b.- (ca.+ a2) / at. t this leads to

theinterval +ap(7 Pa) a a +(0 + 2) /t I-L

which is contained in a+ P-I'aap/ a']

*The extrenal-distribution for (i) Is unique and places positive

probability at both of the points a + I-b and a + g+b If we



eliminate this extremal distribution, the probability is strictly less

than the bound.. so that P( wX~a<o2  a] hich says

that there is an eigenvalue in the open interval (a + v 42+&

a + 4 4 C2 + a? By using a half-open interval, the extreml
distribution is included.

3.2 An Inequality with Negative Moments.

If X is a-positive random variable,. i.e., P (X < 0) 0 .

EX =El then

Pfs< ~ t ) l- - /~ + stp 1

Equality is achieved if and only if the bound is non-negative and X

has the distribution P (X -s)= (a +bt) fs(t - s) , P (X -t)

where a=( iL-~)(1) ,b=p 1~-) (t r)

Proof.

If f(x) (x-16,)2 /x8-I )2 ],then f(x) >0 for

all > >0 ,f(x) > 1 for all x j (s , t) ad the result follows

from E f(X) P( X j (s; ) t)) .The extremal distribution is then

determined by placing probability where f(x) is zero or one..

We note that gli 1 > 1 ,by the Schwarz inequality, so that

a5< p < t Ps< 1/ p 1 ~ < t , follow from the condition that the bound*

be non-negative.j

* . To obtain the corresponding enclosure theorem, note that the bound

is nont-negative when t > (p -s 1-ps



3.3 Bounded Random Variables.

If X is a bounded random variable, i.e., Pca <X -x <P A

R~us~,~x-~P -a a<st< then P([X<sa or X >t) >p.

given as follows:-

(i) 1+ x 2 2 a2+s)~ CI if s +t <cc+, a > apa>0

+i. 1 + > + 1 a2 > -at , 2 > _pt

22

(ii) st + a if S rt > +~ 1, - 2<a >2 -st
-2

(i v) st if a, <~ -a2

2 2' p a ,
B+

(vi) LU. 2 f 0

(vii 0 ,otherwise-.

This inequality is sharp.

Proof .

Write Y X A and let

(1) f(y) -y a(y 0 ) ((s t( - s)

(III) f (y) - (y - ) (y 0) / -(0, -)

(IV) f(y) -- (y - s )(y - t) / (t-( Cc)],

M f (Y) (IciA + a)f82+ 2 ) 2 ,

(vi) f(.v) (ty + a?2 (t2,+ 2) 2



~theni, for each respective case, f (y) ? 0 for -all x e (Cl j , and

Sharpness is exhibited by the following examples. Let Z be a

random variable with the distribution

P(Z p a) (o2 +a2a 3) t/43aa)(2a)]

2 /(a2 a ')(a2.a,)

P(Z-~iina( +a sly~ ~3/2

The hypotheses are satisfied and equality is attained in cases (I) - (iv)

if (a, )a. , a is takento be: (a p t , 1) for (i), (st,

for (ii) , t a c) for (iii) ,(t , a , ax) for (iv;)

NOwlet Pf Z i±=A/.a) p P (Z- I =a)n 1- p.With

a = a Land a =t . equality is attained in cases (v) and (vi),

respectively. Equality in the case (vii) is attained if P (Z, - p =A)

-02 / .(t _ s)] ,P (Z t- . a i 2 / t(t _ a)]

It should be noted that a 2 <00 since a<X- <~ 1
(This inequality, a eisothers, has'been obtained by Melvin Dresher

and Albert PMansky using: the theory of moment spaces.)

To obtain the corresponding enclosure Theorem 2., we examine the

constraints which guarantee that the bound is non-negative. The intervals

obtained for cases (i), (ji), (v) and (Vi) are larger than those for

cases (iii) and (1v) .The latter two combined yield the result that,

there. is an eigenvalue of H - IAI in (Cx r] U([-a2 /rP o

a <r <-0 /p , i.e., there Is an eigenvalue of H iii



(d + r + ]U [v" a 2 /r + ] . The hypotheses 0+ -O,

0 + 4 - 1 give the desired result.

)4. An Enclosure Theorem for Pairs of Eigenvalues.

The following theorem is due to Hijek and R6nyi [8].

4.1 Theorem.

If X1 , .., , X. are independent random variables, EX 0 ,

X2 -_then

P( +.'+ < tm , m 1 , 2, ... n t 1- 2

To obtain the corresponding enclosure theorem, define pim xHx
2 2 x2 I-

0i = xi(H~~LiI) , i =1 2. Hence there is a pair of eigenvalues,

not necessarily distinct, in the region p tlol ' 4l + 42 t t 2 2 ,

for all -<2tal  , 1 -2

fo l - 1 1 t 20r2 P ti + t2 -1

Thus, for example, if t = /X , t 2 = (1 X- ) , with
1 .

2 2 < X/ (1 , we obtain the region

P +l + ' ' 41 + P2 + 02 1  "

M5. Rm-ks on IKantorovich, s Inequality.

We now show how the probabilistic interpretation yields results

concerning inequalities for quadratic forms.

If H is an Hermitian itrix such that 0< a < zHz* < M when

z is.a vector of unit length, Kantorovith's inequality (91 asserts

i: 8



ZHz* zz * < (m+ M)2/ (4,,)

The probabilistic interpretation of this is that if X is a random

variable with P (m < X < M) 1 (m >0) ,. then

(5.1) EX MC. < (M+ )21 (4mM)

This inequality cannot be improved. However, if EX = i is known, then

the inequality from (5.1)

EX"  < (m+M) 2 / (4mMP)

is not sharp, but there is an improvement, namely,

This inequality is based upon the simple fact that if f(x) > g(x) for

xe a, then f f(x) dii > f g(x) d . In particular, if g(x) is

convex on the interval (m , M). and f(x) is the chord through the

points (m ,. g(m) ) and (M, , g(M) ) , we' obtain

(5.3) .g(X) < g(m) _g(m) N, M g(m) - mg(H)
N -m -m

Equality is attained for the distribution P (X = ml = 1 - P (X = M) =

(M - I(-).

Of interest are the special cases g(X) = x 1 and g(x) =x

k >I

~9



A number of Proofs of (5.1) have been given, eg., see Renrici

.[10-]. We note that a simple proof is based upon (5.-2).,. since

Another form for (5.1) is the followings, If P (am< X < M) =1,

(M >0) , P(o< zj)i EZul, then

The proof is essentially the same as for (5.1). A direct appli-

cation of this inequality is the case where A and B are permutable

Heritian matrices with 0 < m.. z&z*<K M, 0 < 32< zBz* <N

zz -1, whence

2%* B2Z* (mm1"2 + j4~ia2): 2

10
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